

Transportation Consortium of South-Central States

Solving Emerging Transportation Resiliency, Sustainability, and Economic
Challenges through the Use of Innovative Materials and Construction
Methods: From Research to Implementation

Development of a Self-Powered
Structural Health Monitoring System
for Transportation Infrastructure
Project No. 17PTAM03

Lead University: Texas A&M University

Collaborative Universities: University of Texas at San Antonio

Final Report

December 2018

Enhancing Durability and Service Life of
Infrastructure

i

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest
of information exchange. The report is funded, partially or entirely, by a grant from the U.S.
Department of Transportation’s University Transportation Centers Program. However, the U.S.
Government assumes no liability for the contents or use thereof.

Acknowledgments
The authors would like to acknowledge the support by the Transportation Consortium of South-
Central States (Tran-SET).

ii

TECHNICAL DOCUMENTATION PAGE
1. Project No.
17PTAM03

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

5. Report Date
Dec. 2018

Development of a Self-Powered Structural Health Monitoring System for
Transportation Infrastructure

6. Performing Organization Code

7. Author(s)
PI: Aydin I Karsilayan https://orcid.org/000-0001-8694-8836
Co-PI: Samer Dessouky https://orcid.org/0000-0002-6799-6805
Co-PI: Athanassios T. Papagiannakis https://orcid.org/0000-0002-3047-
7112

8. Performing Organization Report No.

9. Performing Organization Name and Address
Transportation Consortium of South-Central States (Tran-SET)

10. Work Unit No. (TRAIS)

University Transportation Center for Region 6
3319 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA
70803

11. Contract or Grant No.
69A3551747106

12. Sponsoring Agency Name and Address
United States of America
Department of Transportation

13. Type of Report and Period Covered
Final Research Report
May 2017 – May 2018

Research and Innovative Technology Administration 14. Sponsoring Agency Code

15. Supplementary Notes
Report uploaded and accessible at: Tran-SET's website (http://transet.lsu.edu/)
16. Abstract
Roadways and bridges play an important role in the economic and social health of society by connecting commerce and
people. Economic growth and population expansion pose considerable burden on the aging infrastructure (i.e., pavements
and bridges). There is a pressing need to develop structural health monitoring (SHM) technologies capable of collecting
infrastructure utilization data. Doing so inexpensively with self-powered systems will revolutionize infrastructure
monitoring technology, and will improve decision making enabling roadway and bridge preservation. In this study, a
self-powered battery-less structural health monitoring (SHM) system was developed. It is powered by a thermal energy
harvester equipped with thermoelectric generators (TEGs) driven by temperature differentials between the top of asphalt
pavements and their lower layers. An innovative 2-tier TEG harvester was designed to limit the downtime of the SHM
system when the temperature differentials are insufficient to power a single unit. The 2-tier system requires a minimum
of 2.1⁰C in temperature differential to generate the minimum of 40 mV needed to power the SHM system. The SHM
system consists of a DC-DC booster to increase the voltage generated by the harvester, a buck controller to bring this
voltage down to the 3.3 Volts required for powering the microcontroller, a microcontroller and a wireless transceiver for
transmitting the data. Another transceiver carried on-board a pilot vehicle is needed to retrieve the data. Software was
developed in this project to allow data communication between the two transceivers. The SHM system developed accepts
analogue voltage input from any sensor that generates analogue voltage, (e.g., piezoelectric axle load sensors, strain
gauges, temperature gauges and so on). A prototype of this SHM system was constructed and tested in the lab and it is
ready for field implementation.

17. Key Words
Structural Health Monitoring, Power Harvesting, Sensor, Thermoelectric

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
38

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

http://transet.lsu.edu/

iii

SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol
LENGTH

in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft3 cubic feet 0.028 cubic meters m3

yd3 cubic yards 0.765 cubic meters m3

NOTE: volumes greater than 1000 L shall be shown in m3

MASS
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t")

TEMPERATURE (exact degrees)
oF Fahrenheit 5 (F-32)/9 Celsius oC

or (F-32)/1.8
ILLUMINATION

fc foot-candles 10.76 lux lx
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
lbf poundforce 4.45 newtons N
lbf/in2 poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yards yd2

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2

VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T

TEMPERATURE (exact degrees)
oC Celsius 1.8C+32 Fahrenheit oF

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbf/in2

iv

TABLE OF CONTENTS

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

ACRONYMS, ABBREVIATIONS, AND SYMBOLS ... VIII

EXECUTIVE SUMMARY .. IX

IMPLEMENTATION STATEMENT .. X

1. INTRODUCTION ...1

2. OBJECTIVE ..2

3. SCOPE ...3

4. METHODOLOGY ..4

4.1. TEG Harvester Development ... 4

4.2. Analysis of Temperature Profiles in Asphalt Pavements 6

4.3. Design of the SHM System ... 7

4.3.1. DC-DC Booster and Buck Converter ... 7

4.3.2. Microcontroller and Wireless Transceiver/External Access Receiver ... 9

5. FINDINGS ...12

5.1. Output of TEG Harvester ... 12

5.2. Required Temperature Differential .. 12

5.2.1. Minimum Temperature Differential Needed to Power the DC-DC
Booster .. 12

5.2.2. Estimating SHM System Downtime ... 14

5.3. SHM System Data Storage and Transmission Capabilities 16

6. CONCLUSIONS..18

7. RECOMMENDATIONS ...19

REFERENCES ..20

APPENDIX A ..22

v

A.1. End Device Code for Communicating with Access Point 22

A.2. Access Point Code .. 29

A.3. Minimal RF Integration Code ... 37

vi

LIST OF FIGURES

Figure 1. Thermo-electric generator model TXL-287-03 (6). .. 4

Figure 2. Cross-section of the harvester (7). ... 5

Figure 3. Finite element heat transfer simulations of the harvester (7). 5

Figure 4. Laboratory testing of the TEG harvester prototype. .. 5

Figure 5. Estimated temperature differentials in asphalt concrete in San Antonio, TX
(6/1/2013 – 6/7/2013). ... 6

Figure 6. Self-powered SHM system block diagram. ... 7

Figure 7. DC-DC Booster VB-0410-2 Gold (4). .. 8

Figure 8. Texas Instruments TPS54160 buck converter (3). .. 9

Figure 9. MSP430 microcontroller and CC2500 transceiver (5). ... 9

Figure 10. RoadTrax Brass Linguini (BL) axle sensors and example output from 5-axle truck.
.. 10

Figure 11. Access point... 10

Figure 12. Measured and calculated output voltage of TXL-287-03Z TEG as a function of
ΔT. .. 12

Figure 13. DC-DC Booster (VB-0410-2 Gold) calculated and measured output voltage as a
function of its input. ... 13

Figure 14. Estimated turn-on temperatures as a function of the number of TEG elements in a
harvester unit. ... 13

Figure 15. Calculated and measured voltage input to the loaded buck converter as a function
of ΔT using a four-unit TEG harvester. ... 14

Figure 16. TI TPS54160 buck converter output voltage... 14

Figure 18. Percentage of time there is insufficient power to operate the SHM system (2-Tier
TEG harvester). .. 16

vii

LIST OF TABLES

Table 1. Number of hours per year the SHM system is down. ... 15

Table 2. CC2500 data transfer rates, transmission range and power consumption. 17

viii

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

A/D Analog/Digital

BLE Bluetooth Low Energy

CPU Central Processing Unit

DC Direct Current

GB Giga Bytes

I/O Input/Output

kb Kilobits

kbps Kilobits per second

LDO Low-Dropout

MB Mega Bytes

PCB Printed Circuit Board

RF Radio Frequency

SHM Structural Health Monitoring

TAMU Texas A&M University

TEG Thermoelectric Generator

USB Universal Serial Bus

UTSA University of Texas at San Antonio

ix

EXECUTIVE SUMMARY

This report describes the development of a self-powered battery-less structural health
monitoring (SHM) system capable of processing analog voltage input from a variety of
sensors, such as strain gauges, piezoelectric weighing strips, and so on. It is powered by an
energy harvester driven by thermoelectric generators (TEG). TEGs function on the
Seebeck/Peltier principal. TGEs translate the thermal differences between the upper and lower
layers of asphalt concrete pavements into electrical energy.

The SHM system consists of a TEG harvester connected to a DC-DC booster circuit to increase
the voltage from tens of millivolts to 10 volts DC. A switching regulator (buck converter) is
used to further adjust this DC voltage to levels suitable for powering a microcontroller and a
wireless transceiver (i.e., 3.3 volts). An off-the-shelf low-power microcontroller was used
combined with a wireless transceiver. Another transceiver, either stationary or carried on-board
a pilot vehicle, is needed to retrieve the data. Software was developed to allow data
communication between the two transceivers.

Extensive thermal analysis was carried out in this study to establish the temperature
distribution with depth in asphalt pavements. Environmental data from two extreme locations
in the US were used as input, namely a site in South Texas and another in Northern Minnesota.
This analysis revealed that temperature differentials between the top of the asphalt pavement
and the lower layers are significant. Regardless of lower depth location in the pavements, they
have a pattern of crossing the zero voltage twice per day. To compensate for this, an innovative
2-tier TEG harvester in parallel was designed to limit the downtime of the SHM system. One
TEG harvester is powered by the temperature differential between 0.02 and 0.15 m, while the
other is powered by the temperature differential between 0.02 and 0.50 m. This design
generated the least required temperature differential of 2.1⁰C for powering a SHM system (i.e.,
40 mV) 95% of the time.

The SHM system developed accepts voltage input from any sensor that generates analogue
voltage. This signal can be digitized by the microprocessor and processed through a
programmable transfer function. The amount of data generated and stored depends on the
quantity being monitored. For example, if the axle loads generated by a piezoelectric sensor
are monitored, their peak values may only need to be stored. In this case, storage requirements
are minimal, while their wireless retrieval is possible from a moving vehicle.

In this project, a prototype of this SHM system was constructed and tested in the lab. It was
successful in storing and transmitting data under TEG harvester power alone. The developed
prototype is ready for field implementation.

x

IMPLEMENTATION STATEMENT
In order to disseminate the outcomes of this project, the following activities were conducted
during the implementation phase:

• Two peer-reviewed papers were published,
• Summer Workshop of TRB’s ADC60 Committee on Resource Conservation and

Recovery was given, and
• Field testing and experimentation was conducted on the University of Texas at San

Antonio (UTSA) campus on the system functionality (July 2018).

In addition, the Thermal energy harvester is being co-funded by another grant from the CPS
Energy at UTSA. CPS Energy is the public service utility company at San Antonio. For
potential climate benefits to reduce pavement temperature, CPS Energy is intersected for
sustainable solution towards smart city initiative including solution to Heat Urban Island.

Within this project, only a prototype based on off-the-shelf components were developed. The
resulting sensor is far from being a commercial product, which requires more research,
development and testing.

1

1. INTRODUCTION
Roadways and bridges are the most important components of civil engineering infrastructure.
They play an important role in the economic and social health of society by connecting
commerce and people. Economic growth and population expansion pose considerable burden
on the aging infrastructure (i.e., pavements and bridges). There is a pressing need to develop
structural health monitoring (SHM) technologies capable of collecting infrastructure
utilization data. Doing so inexpensively with self-powered systems will revolutionize
infrastructure monitoring technology, and will improve decision making enabling roadway and
bridge preservation.

SHM technologies have emerged within the last two decades enabling continuous monitoring
of infrastructure using sensors to collect data on critical response parameters (9, 11, 12, 16).
Recent literature suggests that embedded sensors in infrastructure can provide continuous data
on the status of various structural elements (such as pavements and bridges). Although there is
a variety of sensors available for infrastructure monitoring, current technologies mostly rely
on external electrical power from either electrical power lines or batteries. This hinders their
widespread use and makes them prohibitively expensive. Recently introduced energy
harvesters show promise in powering SHM systems. They are powered by one of the following
energy harvesting technologies:

• Solar involving photovoltaic cells that convert solar radiation into electrical energy,
• Piezoelectric that converts mechanical stress changes to electrical energy, and
• Thermoelectric that converts thermal differentials into electrical energy using

thermoelectric generators (TEGs).

Each of these harvesting technologies has distinct advantages and disadvantages. Comparative
reviews can be found in the literature (8, 13). Thermoelectric energy conversion has several
advantages that make it ideal for powering roadside SHM systems. It is not intrusive nor takes
physical roadside space being embedded into the pavement layers. It can be installed below
the pavement surface at depths that allow pavement rehabilitation without having to be
removed and reinstalled. It has no moving parts nor batteries and hence requires no routine
maintenance. It can power SHM systems, while there is sufficient temperature differential to
power the TEGs.

2

2. OBJECTIVE
The objective of this project is to develop a self-powered system capable of recording data
from structural health monitoring (SHM) sensors, such as traffic counters, axle weighing
sensors, strain gauges, etc. The particular design requirements set forth for this system are:

• It accepts analog voltage input form a variety of SHM sensors,
• It is readily programmable to allow processing the voltage input into meaningful SHM

parameters such as peak load, peak strain, etc.,
• It functions without a storage battery, and
• It allows for continuous wireless data retrieval.

3

3. SCOPE
The development of this self-powered system is based on a thermal energy harvester developed
in an earlier research study (7). This harvester utilizes the temperature differentials between
the surface of asphalt pavements and their lower layers to generate electrical power through
thermoelectric generators (TEGs). Surface heat is transferred to the lower layers through
insulated copper plates, while at the lower part the harvester is kept cool through a heat sink.
TEGs generate power in response to temperature differences, which is referred to as the
Seebeck/Peltier principle (14).

The work presented in this report builds on this thermal harvester by adding the hardware and
software necessary for conditioning the power being generated, and using it to drive a
programmable microprocessor capable of capturing and recording SHM data and transmitting
them wirelessly. Doing so under the limited power generated by the TEG harvester without a
storage battery is especially challenging.

In this study, two locations in the US were selected to represent extreme weather conditions in
the United States, namely San Antonio, Texas and International Falls, Minnesota. Climatic
data for each of these locations was obtained from the LTPP database for a period of a full
year.

4

4. METHODOLOGY
4.1. TEG Harvester Development
TEGs work on the Seebeck/Peltier principle (14). This is described as the production of an
electromotive force when two dissimilar materials form a loop with different temperatures at
each junction. Using this principle, voltage levels exceeding 40mV can be obtained from an
individual TEG in response to temperature differentials as low as couple of degrees Celsius.

For the prototype designed, the commercially available TEG TXL-287-03Z (6) was used to
convert the temperature differentials between the road surface and the lower pavement layers
to a usable voltage difference. The open-circuit output voltage (Voc) obtained from one of these
TEGs is given by:

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑁𝑁(0.0002 × 1.004∆𝑇𝑇) × ∆𝑇𝑇 [1]

where:
N = number of TEG thermoelectric elements, and
ΔT = temperature difference.

The TXL-287-03Z used has 287 thermoelectric elements (Figure 1). It measures 62 mm x 62
mm x 5.3 mm. Connecting these TEGs in series can increase the voltage generated, while
connecting them in parallel can increase the current being generated. Of course, doing so
increases the overall internal resistance of the harvester. Several harvester prototypes were
developed with either 2 or 4 TEGs connected in parallel. Additional design features of the
harvester are:

• the copper plates transferring heat from the top of the pavement (0.02 m under the
surface) to lower layers, and

• a Heat Sink at the lower layers for dissipating heat keeping the temperature of the lower
layers relatively constant.

A schematic of the harvester is shown in Figure 2. Various design features of the TEG harvester
were tested using the finite element package Abaqus (Figure 3).

Figure 1. Thermo-electric generator model TXL-287-03 (6).

5

Figure 2. Cross-section of the harvester (7).

Figure 3. Finite element heat transfer simulations of the harvester (7).

Extensive laboratory testing of several harvester prototypes was conducted independently by
the University of Texas at San Antonio (UTSA) and Texas A&M University (TAMU) to verify
that the output of the harvester yields usable voltage and amperage levels (Figure 4).

Figure 4. Laboratory testing of the TEG harvester prototype.

Hot side

Cold side

Harvester

6

4.2. Analysis of Temperature Profiles in Asphalt Pavements
A critical component of the development of the self-powered SHM system was determining
the pavement temperature differential fluctuations versus time. The reason was that when the
temperature difference ∆T drops below a threshold, the harvester will not generate sufficient
power for the SHM system. For this purpose, the computer program TEMPS (15) was used in
this project to analyze temperature profiles for two locations that represent extreme weather
conditions in the United States, namely San Antonio, Texas and International Falls, Minnesota.
Weather data for a specific site in each of these locations was obtained from the LTPP database
(10) for a period of a full year. In the TEMPS analysis of temperature profiles of this study, a
pavement structure consisting of 0.15 m of asphalt concrete (AC) layer and 0.40 m of unbound
limestone base was considered. The thermal properties of the AC layers and the soil subgrade
were obtained from the literature. For the asphalt concrete the coefficients of thermal
permeability and thermal capacity used were 910 J/kg/⁰K and 1.167 W/m/⁰K, respectively. The
albedo of the surface was assumed to be 0.15. The computer software TEMPS allowed
predicating pavement temperature profiles at hourly increments. This data was analyzed to
obtain ∆T estimates between 2 pairs of pavement depth locations:

• Temperature at 0.02 m from the surface minus temperature at 0.15 from surface, and
• Temperature at 0.02 m from the surface minus temperature at 0.50 from surface.

The top location (i.e., 0.02 m) corresponds to the upper location of the heat transfer plate of
the harvester, and the lower the location of the heat sink of the harvester. An example of the
results is shown in Figure 5. It can be seen that these ∆Ts follow a pattern that crosses zero
twice per day, once in the morning and the other in the evening. It is observed, however, that
these crossings do not happen at the same time for these two sets of locations.

Figure 5. Estimated temperature differentials in asphalt concrete in San Antonio, TX (6/1/2013 – 6/7/2013).

Although brief, these zero temperature crossings will cause interruption to the power of the
battery-less SHM system. This problem was resolved by placing two sets of TEG harvesters
connected in parallel, one with the heat sink at 0.15 m and the other with a heat sink at a 0.50

7

m depth. This 2-tier design minimizes the time periods when there is insufficient power to
drive the SHM system. Analysis of the time period when insufficient power is available for
driving the SHM is presented later.

4.3. Design of the SHM System
The SHM system is powered by the TEG harvester described above. It consists of four main
additional components:

• A DC-DC boost converter,
• A buck converter,
• A microcontroller, and
• Wireless transceiver communicating to an external access point.

The function of these components is described in detail below. A block schematic of the
components making up the SHM system is shown in Figure 6 enclosed by a red dotted line.

4.3.1. DC-DC Booster and Buck Converter
The voltage generated from the TEG harvester could be as low as a few millivolts. Although
sufficient levels of power could be harvested most of the time through the use of multiple
TEGs, there is still a need to boost the power to the levels needed to operate a microcontroller.
To increase the TEG harvested voltage to higher levels, a commercially-available DC-DC
booster (VB-0410-2 Gold) shown in Figure 7 was used in this project (4). This circuit provides
approximately 10V DC output for input levels as low as 40mV. The device is built to operate
under both positive and negative input voltages and hence can accommodate either the positive
or negative voltages generated depending on the sign of the temperature differences powering
the TEGs.

Figure 6. Self-powered SHM system block diagram.

8

Figure 7. DC-DC Booster VB-0410-2 Gold (4).

The resulting 10V output from the DC-DC booster, however, is too high for the low-
voltage/low-power microcontroller circuitry powering commercially available
microprocessors, such as those made by Texas Instruments and Arduino. Therefore, an
efficient regulator to reduce the 10V DC to 3.3V DC is required. Among all regulators
available in the market, low-dropout regulators (LDOs) provide clean DC output but cannot
accommodate the large voltage drop required in this case (i.e., from 10 to 3.3 Volts). As an
alternative, a switching-mode voltage regulator, specifically a buck converter was used. Buck
converters have a high conversion efficiency and deliver an acceptable DC signal quality. For
the SHM system prototype, the commercially available buck converter TPS54160 from Texas
Instruments (3) was used (Figure 8).

9

Figure 8. Texas Instruments TPS54160 buck converter (3).

4.3.2. Microcontroller and Wireless Transceiver/External Access Receiver
Data acquisition and storage operations are performed by a Texas Instruments MSP430
microcontroller, paired with CC2500 wireless transceiver on the same printed circuit board
(PCB) (5) (Figure 9). These two elements comprise the End Device in the conceptual diagram
shown earlier (Figure 6). Vehicle data can be collected using any commercially available
sensor that generates analogue voltage output, such as axle load weighing sensors or strain
gauges. An example is the piezoelectric strip sensors used for weighing vehicles in motion
(e.g., MSI’s RoadTrax BL sensor shown in Figure 10). The particular transfer function between
the sensor voltage output and the quantity being monitored needs to be established and
programmed into the microprocessor. In this case, this transfer function is the relationship
between peak voltage and axle load. The quantity to be computed and stored would be the peak
load value of each axle.

Figure 9. MSP430 microcontroller and CC2500 transceiver (5).

10

Figure 10. RoadTrax Brass Linguini (BL) axle sensors and example output from 5-axle truck.

The CC2500 wireless transceiver runs on the SimpliciTI protocol (1), which is a low-power
radio frequency (RF) network protocol optimized for small-sized RF networks having a limited
number of nodes communicating directly to each other or to an external access point through
a range extender. The external access point is indicated by a green dotted line in Figure 6. The
CC2500 is integrated with a highly-configurable baseband modem. The modem supports
several modulation formats and has a maximum configurable data rate of 500 kBaud.

In the prototype system, the Transceiver CC2500 is used together with the MSP430F2274
controller in the End Block, as well as in the Access Point shown in Figure 11. The Access
Point collects data from the End Device. A custom code was developed in this study for this
purpose (see the Appendix) which can be uploaded to the receiver via the USB port. The end
device is to be installed roadside or be carried by a pilot vehicle that collects data by driving
in the vicinity of the SHM sensor. When an Access Point is in range of an End Device, the
association between two applications, takes place, referred to as linking. The linking process
creates a connection between “peers” through which messages can be exchanged. When
linking is established, it is always a bi-directional connection, indicated by blinking of the on-
board LEDs. In the prototype system, the End Device LED lights were disabled to conserve
power. Therefore, the indicator of an established connection is the blinking of the Access Point
LEDs only.

Figure 11. Access point.

The CC2500 transceiver operates in three modes:
1. Demo mode: This is the default mode of operation of the Transmitter on the End

Device. While in this mode, the device continuously looks for an Access Point (AP) to

11

pair with. As soon as an AP is detected, it is ready to transmit all the data it has been
acquiring through its inputs and processing through its on-board ADC in the
MSP430F2274.

2. Transmit mode: The End Device enters this mode once an AP is detected and ready for
data transmission. The End Device will transmit all the digitized data on its memory
onto the Access Point as long as it is within range. This mode requires 1 mA at 3 V
(i.e., it consumes 3 mW), at a rate of 1.2 kbps. The establishment of a connection
between the End Device and the AP is signaled by the blinking of one of the LEDs on
the AP. If the connection is lost, the blinking stops and restarts if the connection is
restored.

3. Sleep mode: This mode requires the least power. In this mode, the End Device is not
actively looking for an AP to pair with. It simply takes in analog data, processes it, and
stores it in memory. This mode typically operates at 390µA at 3 V (i.e., it consumes
1.17 mW).

Obviously, the power consumption for the Transmit mode is much higher than that of the Sleep
mode even at modest transmission rates. As discussed later, the decision was made to keep the
Transmit mode permanently on to allow data uploading any time the AP is nearby.

12

5. FINDINGS
The functionality of each block shown in Figure 6 was tested by lab measurements. After
testing each component separately, the blocks were integrated to test the complete system. At
this stage, the system functionality was verified and the prototype was deemed ready for field
testing.

5.1. Output of TEG Harvester
Figure 12 shows the measured open-circuit output voltage of a TXL-287-03Z TEG as a
function of temperature difference, as well as the calculated voltage based on Equation 1.
Experimental results were in agreement with the theoretical calculations. The small errors
observed were possibly due to measurement inaccuracies and/or lack of thermometer
calibration.

Figure 12. Measured and calculated output voltage of TXL-287-03Z TEG as a function of ΔT.

5.2. Required Temperature Differential
5.2.1. Minimum Temperature Differential Needed to Power the DC-DC Booster
Figure 13 shows the estimated and measured output voltage of the VB-0410-2 Gold DC-DC
booster circuit as a function of the applied input voltage. The estimates were obtained from the
booster’s manufacturing specifications. The lab measurements were in close agreement to
these estimates. Clearly, the output voltage is approximately 10V for any voltage supplied to
the booster above a 40mV threshold. Theoretically, this level of voltage can be generated by a
single TEG unit from a mere 0.5⁰C temperature differential ΔT (Figure 12). However,
considering the load (i.e., resistance) of the booster, a slightly higher minimum temperature
differential would be necessary to generate the minimum 40mV output needed. This minimum

13

temperature, is referred to as the turn-on differential temperature. To maintain a reasonably
low turn-on differential temperature under load, several TEG units connected in parallel are
necessary. Figure 14 shows the corresponding turn-on differential temperature as a function of
the number of TEG units used per harvester. This plot suggests, for example, that a four-unit
TEG harvester is sufficient to maintain operation of the booster at the relatively low turn-on
temperature differential of 2.1⁰C.

Figure 15 verifies this experimentally by showing that a minimum ΔT of 2.1⁰C is sufficient to
power the system under electrical load. Figure 16 shows the buck converter output, which
provides the supply voltage to the microcontroller and the wireless transceiver. This figure
shows the same temperature threshold, but with a 3.3V output voltage.

Figure 13. DC-DC Booster (VB-0410-2 Gold) calculated and measured output voltage as a function of its input.

Figure 14. Estimated turn-on temperatures as a function of the number of TEG elements in a harvester unit.

14

Figure 15. Calculated and measured voltage input to the loaded buck converter as a function of ΔT using a four-unit
TEG harvester.

Figure 16. TI TPS54160 buck converter output voltage.

5.2.2. Estimating SHM System Downtime
Earlier measurements and plots show that the minimum required ΔT with a four-unit TEG
harvester is approximately 2.1⁰C. The earlier analysis of the temperature profiles in asphalt
concrete pavements allowed computing the number of hours per year when there will be a
temperature differential lower than 2.1⁰C and hence, the system will be down for lack of power.
As mentioned earlier, the length of time when the minimum 2.1⁰C temperature differential is
available can be expanded by installing a 2-tier TEG harvester connected in parallel, one driven
by the 0.02m-0.15m temperature differential and the other by the 0.02m-0.50m temperature
differential. This 2-tier design allows power generation from at least one of the harvesters when

15

the temperature differential driving the other drops below the 2.1⁰C temperature differential
threshold (Figure 5). These two TEG harvester units can be connected to the same booster as
shown in Figure 17.

Figure 17. System block diagram for the 2-tier design TEG harvester.

Assuming that the SHM system uses a 2-tier TEG harvester design, its downtime can be
computed from the length of time the temperature differential drops below 2.1⁰C
simultaneously for both harvesters. The results of the thermal profile analysis presented earlier
was used for this purpose. Analysis was conducted for both the South Texas and Northern
Minnesota locations. Table 1 shows the number of hours the SHM system has insufficient
power to operate as a function of the number of TEG units per harvester. Figure 18 plots the
results in terms of % off period per year. It is noted that the two harvester prototypes developed
had 2 or 4 TEG generators each. The differential cost between these two designs is marginal.

Table 1. Number of hours per year the SHM system is down.

No. of TEG units
per Harvester

Annual off-time
in Texas (hours)

Annual off-time in
Minnesota (hours)

1 2815 2410

2 508 368

3 115 98

4 30 18

16

Figure 18. Percentage of time there is insufficient power to operate the SHM system (2-Tier TEG harvester).

5.3. SHM System Data Storage and Transmission Capabilities
The CC2500 transceiver (on the EZ4300-RF2500 chip) used in the prototype SHM system
transmits data at a minimum rate of 1.2 kbps using approximately 3mW power. The
MSP430F2274 microcontroller has a 10-bit ADC. The data storage requirement depends on
the data being recorded. As an example, to record the peak load value for one of the axles
measured by the RoadTrax BL sensor (Figure 10) would require 3 bytes (i.e., 24 bits). In this
case, the internal data storage and transmission requirements would be a function of the volume
and configuration of the traffic at a particular site (i.e., number of vehicles/day and percent of
trucks by class). Regardless, if the quantity recorded was a single number, it would take a very
long time to fill an inexpensive memory card. For example, a heavily trafficked lane carrying
10,000 cars per day will generate 60,000 bytes of data per day, which in turn will take over
700 years to fill a 16 GB memory card. Hence, data storage is not an issue for this type of
application.

Data transmission however, has limitations. Data needs to be transmitted from the End Device
to the Access Point of the system through the wireless transceiver CC2500. As mentioned
earlier, the transceiver is either at roadside or is carried by a pilot car that is dedicated to collect
data throughout a roadway network. Either way, powering the Access Point is not an issue.
The power required by the End Device, whoever, is a function of the data transmission range
and the data transmission rates. Table 2 shows the data transfer rates and the corresponding
power consumption and range of the CC2500 transceiver.

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4

%
 o

f T
im

e
In

su
ff

ic
ie

nt
 P

ow
er

Number of TEG Units per Harvester

Texas Minnesota

17

Table 2. CC2500 data transfer rates, transmission range and power consumption.

Power (mW) Range (m) Transmission
time (s)

Data transfer
(kb)

3.18 18 0.81 0.966

24.2 44 1.97 98.43

34.5 50 2.24 223.7

41.1 55 2.46 369.1

48.7 65 2.91 727.1

60.3 72 3.22 1288.6

70 75 3.36 1677.8

A 2-tier harvester design with a four-unit TEG each will need to generate at least 24.2 mW to
transmit 98.43 kb in 1.97 sec (i.e., rate of only 50 kbps) over a range of 44 m, so a pilot vehicle
travelling at 50 mph (22.22 m/sec) can retrieve it without slowing down. Larger size data would
require that the pilot vehicle slows down or even stops. Alternatively, the transmission
rate/range could be increased posing additional SHM system powering requirements. Doing
so is feasible by drastically increasing the number of TEG units per harvester. Even so, such a
system may not be able to transmit at very high rates when there is insufficient temperature
differential to power it. There are two potential solutions to this issue:

• Introduce a storage battery, and
• Transmit only when the Access Point is nearby, otherwise keeping the End Device in

“sleep” mode which consumes only 1.3 mW. This would require a mechanism for
“waking up” the End Device.

These two potential enhancements to the SHM system are feasible but were not implemented
in this study, because they did not satisfy the system requirements set forth. They are under
consideration in developing the next generation of the SHM system.

18

6. CONCLUSIONS
The SHM system developed meets the requirements set forth by this study. It is self-powered,
battery-less and provides continuous data storage and wireless transmission. It is very versatile,
accepting input from any sensor that outputs analog voltage. The user simply needs to program
the transfer function into the microprocessor and have the system store the value of interest
(e.g., peak axle load, peak strain and so on). The 2-tier TEG harvester provides sufficient
energy to keep the system powered for temperature differentials as low as 2.1⁰C. Analyzing
the temperature distributions in asphalt pavements showed that this is possible 95% of the time.
Storing such data does not seem to be an issue, given the low cost of flush memory.
Transmitting this data is an issue, since the End Device is the most power demanding function
of the SHM system. The SimpliciTI protocol used allows relatively low transmission rates
which make drive-by retrieval limited (i.e., only 50 kb of data can be read at 50 mph).

19

7. RECOMMENDATIONS
The highest power consumption component of the SHM system developed is the End Device
wireless data transmission. Replacing the SimpliciTI protocol used for transmission with a
lower power transceiver such one using the Bluetooth Low Energy (BLE) protocol could
reduce power requirements, increase data transmission speed and expand transmission range.
As pointed out earlier, another potential improvement would be to set the End Device to
“sleep” mode while there is no Access Point in the vicinity. The energy saved from doing so
could charge a storage battery that could power the SHM continuously, regardless of the
temperature differentials applied to the TEG harvester. Needless to say, a mechanism for
“waking up” the End Device would be needed and the battery would increase the maintenance
requirements for the SHM system.

20

REFERENCES
1. Texas Instruments. A brief tutorial on SimpliciTI 1.1.1, November 2010.
http://senstools.gforge.inria.fr/lib/exe/fetch.php?media=lib:simpliciti_brief_tutorial.pdf.
Accessed June 11, 2018.

2. Texas Instruments Wiki. The eZ430-RF2500 Development Tool. Access point.
http://processors.wiki.ti.com/index.php/EZ430-RF2500. Accessed June 11, 2018.

3. Wikimedia Commons. File: Buck_Circuit_Diagram.svg, DC buck converter.
https://commons.wikimedia.org/w/index.php?curid=8687723. Accessed June 11, 2018.

4. Custom Thermoelectric. ELC-VB0410-2 Bipolar Voltage Booster 40mV.
https://customthermoelectric.com/elc-vb0410-2-bipolar-voltage-booster-40mv.html.
Accessed June 11, 2018.

5. Texas Instruments. TI Power Management Lab Kit (TI-PMLK),
https://university.ti.com/en/faculty/teaching-materials-and-classroom-resources/ti-based-
teaching-kits-for-analog-and-power-design/power-management-lab-kit-series. Accessed June
11, 2018.

6. Custom Thermoelectric. T.X.L-287-03.Z T.E.G. 62 x 62mm.
https://customthermoelectric.com/txl-287-03z-teg-62-x-62mm.html. Accessed June 11, 2018.

7. Datta, U., Dessouky, S., and Papagiannakis, A.T. (2017) Harvesting of Thermoelectric
Energy from Asphalt Pavements, TRB Paper 17-05481, Journal of the Transportation Research
Board Record No. 2628, http://dx.doi.org/10.3141/2628-02

8. Gilbert, J.M. and Balouchi, F. (2008) Comparison of energy harvesting system for wireless
sensor networks, International Journal of Automation and Computing 5(4):334-347, DOI:
10.1007/s11633-008-0334-2

9. Hassan, C., Man, S.-H., and Chang, C.-C. (2012) Development of energy harvested
wireless sensing node for structural health monitoring, IEEE, pp. 22–27.

10. Long Term Pavement Performance Database On-Line, https://infopave.fhwa.dot.gov/
(2018).

11. Lynch, J.P. and Loh, K.J. (2006) A summary review of wireless sensors and sensor
networks for structural health monitoring,” The Shock and Vibration Digest, 1(2), pp. 3–12.

12. Saida, M., Zaibi, G., and Kachouri, A. (2017) A new design of thermoelectric generator
for health monitoring, International Conference on Smart, Monitored and Controlled Cities
(SM2C).

13. Tan, Y.K., and Panda, S.K. (2010) Review of Energy Harvesting Technologies for
Sustainable Wireless Sensor Network, www.intechopen.com

14. Thermoelectric generator. https://en.wikipedia.org/wiki/Thermoelectric_generator.
Accessed 23 May, 2016.

21

15. U. Nevada Reno, (2014), Temperature Estimate Model for Pavement Structures (TEMPS)
www.arc.unr.edu/Software.html#TEMPS

16. Zhou, D., and Kong, N. (2010) A self-powered wireless sensor node for structural health
monitoring, in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health
Monitoring, pp. 2–13, SPIE.

22

APPENDIX A
A.1. End Device Code for Communicating with Access Point
In the prototype system, the Transceiver CC2500 is used together with the MSP430F2274
controller in the End Block, as well as in the Access Point. The Access Point collects data from
the End Device. The custom code below was developed in this study for this purpose which
can be uploaded to the receiver via the USB port.
#include "bsp.h"
#include "mrfi.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "vlo_rand.h"
//#include "msp430g2253.h"
/*--
 * Defines
 --/
/* How many times to try a TX and miss an acknowledge
 before doing a scan */
#define MISSES_IN_A_ROW 2
/*--
 * Prototypes
 --/
static void linkTo(void);
void createRandomAddress(void);
__interrupt void ADC10_ISR(void);
__interrupt void Timer_A (void);
/*--
* Globals
--*/
static linkID_t sLinkID1 = 0;
/* Temperature offset set at production */
volatile int * tempOffset = (int *)0x10F4;
/* Initialize radio address location */
char * Flash_Addr = (char *)0x10F0;
/* Work loop semaphores */
static volatile uint8_t sSelfMeasureSem = 0;
// Global variables
int adc[10] = {0}; //Sets up an array of 10 integers
and zero's the values
int avg_adc = 0;
//MRFI_Init();
// Function prototypes
void adc_Setup();
void adc_Sam10();

23

/*--
 * Main
 --/
void main (void)
{
 addr_t lAddr;
 /* Initialize board-specific hardware */
 BSP_Init();
 //WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 adc_Setup();
 /* Check flash for previously stored address */
 if(Flash_Addr[0] == 0xFF && Flash_Addr[1] == 0xFF &&
 Flash_Addr[2] == 0xFF && Flash_Addr[3] == 0xFF)
 {

createRandomAddress(); // Create and store a new
random address

 }
 /* Read out address from flash */
 lAddr.addr[0] = Flash_Addr[0];
 lAddr.addr[1] = Flash_Addr[1];
 lAddr.addr[2] = Flash_Addr[2];
 lAddr.addr[3] = Flash_Addr[3];
 /* Tell network stack the device address */
 SMPL_Ioctl(IOCTL_OBJ_ADDR, IOCTL_ACT_SET, &lAddr);
 /* Initialize TimerA and oscillator */
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 TACCTL0 = CCIE; // TACCR0 interrupt enabled
 TACCR0 = 24000; // ~ 1 sec
 TACTL = TASSEL_1 + MC_1; // ACLK, upmode
 while (SMPL_SUCCESS != SMPL_Init(0))
 {

//BSP_TOGGLE_LED1();
//BSP_TOGGLE_LED2();
/* Go to sleep (LPM3 with interrupts enabled)
 * Timer A0 interrupt will wake CPU up every second
to retry initializing

*/
__bis_SR_register(LPM3_bits+GIE);
 // LPM3 with interrupts enabled

 }
 /* LEDs on solid to indicate successful join. */
 //BSP_TURN_ON_LED1();
 //BSP_TURN_ON_LED2();
 /* Unconditional link to AP which is listening due
 to successful join. */
 linkTo();

24

 while(1);
}
static void linkTo()
{
 uint8_t msg[3];
#ifdef APP_AUTO_ACK
 uint8_t misses, done;
#endif
 /* Keep trying to link... */
 while (SMPL_SUCCESS != SMPL_Link(&sLinkID1))
 {

//BSP_TOGGLE_LED1();
//BSP_TOGGLE_LED2();
/* Go to sleep (LPM3 with interrupts enabled)
 * Timer A0 interrupt will wake CPU up every second
to retry linking

*/
 __bis_SR_register(LPM3_bits+GIE);
 }
 /* Turn off LEDs. */
 //BSP_TURN_OFF_LED1();
 //BSP_TURN_OFF_LED2();
 /* Put the radio to sleep */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0);
 while (1)
 {
 /* Go to sleep, waiting for interrupt every second
 to acquire data */
 __bis_SR_register(LPM3_bits);
 adc_Sam10(); // Function call for adc_samp
 // Add all the sampled data and divide by 10 to
 //find average
 avg_adc = ((adc[0]+adc[1]+adc[2]+adc[3]+adc[4]+
 adc[5]+adc[6]+adc[7]+adc[8]+adc[9]) / 10);
 //avg_adc = adc[0];
 msg[2]=(avg_adc/100);
 msg[1]=(avg_adc%100/10);
 msg[0]=(avg_adc%10);
 //msg[2] = 2;
 //msg[1] = 1;
 //msg[0] = 0;
 /* Get radio ready...awakens in idle state */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, 0);
#ifdef APP_AUTO_ACK
 /* Request that the AP sends an ACK back to confirm
 data transmission

25

 * Note: Enabling this section more than DOUBLES the
 current consumption due to the amount of time IN RX
 waiting for
 the AP to respond
 */
 done = 0;
 while (!done)
 {
 noAck = 0;
 /* Try sending message MISSES_IN_A_ROW
 times looking for ack */
 for (misses=0; misses < MISSES_IN_A_ROW; ++misses)
 {
 if (SMPL_SUCCESS == (rc=SMPL_SendOpt(sLinkID1,
 msg, sizeof(msg), SMPL_TXOPTION_ACKREQ)))
 {
 /* Message acked. We're done. Toggle LED 1
 to indicate ack received. */
 BSP_TURN_ON_LED1();
 __delay_cycles(2000);
 BSP_TURN_OFF_LED1();
 break;
 }
 if (SMPL_NO_ACK == rc)
 {
 /* Count ack failures. Could also fail
 becuase of CCA and
 * we don't want to scan in this case.
 */
 noAck++;
 }
 }
 if (MISSES_IN_A_ROW == noAck)
 {
 /* Message not acked */
 BSP_TURN_ON_LED2();
 __delay_cycles(2000);
 BSP_TURN_OFF_LED2();
#ifdef FREQUENCY_AGILITY
 /* Assume we're on the wrong channel so
 look for channel by
 * using the Ping to initiate a scan when
 it gets no reply. With
 * a successful ping try sending the
 message again. Otherwise,
 * for any error we get we will wait

26

 until the next button
 * press to try again.
 */
 if (SMPL_SUCCESS != SMPL_Ping(sLinkID1))
 {
 done = 1;
 }
#else
 done = 1;
#endif /* FREQUENCY_AGILITY */
 }
 else
 {
 /* Got the ack or we don't care. We're done. */
 done = 1;
 }
 }
#else
 /* No AP acknowledgement, just send a single
 message to the AP */
 SMPL_SendOpt(sLinkID1, msg, sizeof(msg), SMPL_TXOPTION_NONE);
#endif /* APP_AUTO_ACK */
 /* Put radio back to sleep */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0);
 /* Done with measurement, disable measure flag */
 sSelfMeasureSem = 0;
 }
 }
void createRandomAddress()
{
 unsigned int rand, rand2;
 do
 {
 rand = TI_getRandomIntegerFromVLO();
 // first byte can not be 0x00 of 0xFF
 }
 while((rand & 0xFF00)==0xFF00 || (rand & 0xFF00)==0x0000);
 rand2 = TI_getRandomIntegerFromVLO();
 BCSCTL1 = CALBC1_1MHZ;
 // Set DCO to 1MHz
 DCOCTL = CALDCO_1MHZ;
 FCTL2 = FWKEY + FSSEL0 + FN1;
 // MCLK/3 for Flash Timing Generator
 FCTL3 = FWKEY + LOCKA;
 // Clear LOCK & LOCKA bits
 FCTL1 = FWKEY + WRT;

27

 // Set WRT bit for write operation
 Flash_Addr[0]=(rand>>8) & 0xFF;
 Flash_Addr[1]=rand & 0xFF;
 Flash_Addr[2]=(rand2>>8) & 0xFF;
 Flash_Addr[3]=rand2 & 0xFF;
 FCTL1 = FWKEY;
 // Clear WRT bit
 FCTL3 = FWKEY + LOCKA + LOCK;
 // Set LOCK & LOCKA bit
}
/*--
 * ADC10 interrupt service routine
 --/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
 __bic_SR_register_on_exit(CPUOFF);
 // Clear CPUOFF bit from 0(SR)
}
/*--
 * Timer A0 interrupt service routine
 --/
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 sSelfMeasureSem = 1;
 __bic_SR_register_on_exit(LPM3_bits);
 // Clear LPM3 bit from 0(SR)
}
// ADC10 interrupt service routine
// ADC set-up function
void adc_Setup()
{
 ADC10CTL1 = CONSEQ_2 + INCH_0;
 // Repeat single channel, A0
 ADC10CTL0 = ADC10SHT_2 + MSC + ADC10ON + ADC10IE;
 // Sample & Hold Time + ADC10 ON + Interrupt Enable
 ADC10DTC1 = 0x01;
 // 10 conversions
 ADC10AE0 |= 0x0A;
 // P1.0 ADC option select
}
// ADC sample conversion function
void adc_Sam10()
{
 ADC10CTL0 &= ~ENC;

28

 // Disable Conversion
 while (ADC10CTL1 & BUSY);
 // Wait if ADC10 busy
 ADC10SA = (int)adc;
 // Transfers data to next array (DTC auto increments address)
 ADC10CTL0 |= ENC + ADC10SC;
 // Enable Conversion and conversion start
 __bis_SR_register(CPUOFF + GIE);
 // Low Power Mode 0, ADC10_ISR
}

29

A.2. Access Point Code
#include <string.h>
#include <stdio.h>
#include "bsp.h"
#include "mrfi.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "nwk_frame.h"
#include "nwk.h"
#include "virtual_com_cmds.h"
/* Frequency Agility helper functions */
static void checkChangeChannel(void);
static void changeChannel(void);
__interrupt void ADC10_ISR(void);
__interrupt void Timer_A (void);
/*--
 * Globals
 --/
/* reserve space for the maximum possible peer Link IDs */
static linkID_t sLID[NUM_CONNECTIONS] = {0};
static uint8_t sNumCurrentPeers = 0;
/* callback handler */
static uint8_t sCB(linkID_t);
/* received message handler */
static void processMessage(linkID_t, uint8_t *, uint8_t);
/* work loop semaphores */
static volatile uint8_t sPeerFrameSem = 0;
static volatile uint8_t sJoinSem = 0;
static volatile uint8_t sSelfMeasureSem = 0;
/* blink LEDs when channel changes... */
static volatile uint8_t sBlinky = 0;
/* data for terminal output */
const char splash[] = {"\r\n---------
--- \r\n ****\r\n
**** eZ430-RF2500\r\n ******o****
Temperature Sensor Network\r\n********_///_****
Copyright 2009\r\n ******/_//_/***** Texas Instruments
Incorporated\r\n ** ***(__/***** All rights reserved.\r\n
********* SimpliciTI1.1.1\r\n *****\r\n ***\r\n--
----------\r\n"};
volatile int * tempOffset = (int *)0x10F4;
/*--
 * Frequency Agility support (interference detection)
 --/

30

#ifdef FREQUENCY_AGILITY

#define INTERFERNCE_THRESHOLD_DBM (-70)
#define SSIZE 25
#define IN_A_ROW 3
static int8_t sSample[SSIZE];
static uint8_t sChannel = 0;
#endif /* FREQUENCY_AGILITY */
char printing[] = {"\r\nXXX"};
int value=0;
/*--
 * Main
 --/
void main (void)
{
 bspIState_t intState;
#ifdef FREQUENCY_AGILITY
 memset(sSample, 0x0, sizeof(sSample));
#endif
 /* Initialize board */
 BSP_Init();

 /* Initialize TimerA and oscillator */
 BCSCTL3 |= LFXT1S_2;
 // LFXT1 = VLO
 TACCTL0 = CCIE;
 // TACCR0 interrupt enabled
 TACCR0 = 12000;
 // ~1 second
 TACTL = TASSEL_1 + MC_1;
 // ACLK, upmode
 /* Initialize serial port */
 COM_Init();
 //sprintf(printing,"Started");
 //Transmit splash screen and network init notification
 TXString((char*)splash, sizeof splash);
 TXString("\r\nInitializing Network....", 26);
 SMPL_Init(sCB);
 // network initialized
 TXString("Done\r\n", 6);
 /* green and red LEDs on solid to indicate waiting
 for a Join. */
 BSP_TURN_ON_LED1();
 BSP_TURN_ON_LED2();
 /* main work loop */
 while (1)

31

 {
 /* Wait for the Join semaphore to be set by the
 receipt of a Join frame from
 * a device that supports an End Device.
 *
 * An external method could be used as well. A button
 press could be connected
 * to an ISR and the ISR could set a semaphore that
 is checked by a function
 * call here, or a command shell running in support
 of a serial connection
 * could set a semaphore that is checked by a function
 call.
 */
 if (sJoinSem && (sNumCurrentPeers < NUM_CONNECTIONS))
 {
 /* listen for a new connection */
 while (1)
 {
 if (SMPL_SUCCESS == SMPL_LinkListen
 (&sLID[sNumCurrentPeers]))
 {
 break;
 }
 /* Implement fail-to-link policy here.
 otherwise, listen again. */
 }
 sNumCurrentPeers++;
 BSP_ENTER_CRITICAL_SECTION(intState);
 sJoinSem--;
 BSP_EXIT_CRITICAL_SECTION(intState);
 }
 // if it is time to measure our own temperature...
 //if(sSelfMeasureSem)
 //{
 //char msg [6];
 //char addr[] = {"HUB0"};
 //char rssi[] = {"000"};
 //int degC, volt;
 //volatile long temp;
 //int results[2];
 /* Get temperature */
 //ADC10CTL1 = INCH_10 + ADC10DIV_4;
 // Temp Sensor ADC10CLK/5
 //ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON
 + ADC10ON + ADC10IE + ADC10SR;

32

 /* Allow ref voltage to settle for at least
 30us (30us * 8MHz = 240 cycles)
 * See SLAS504D for settling time spec
 */
 //__delay_cycles(240);
 //ADC10CTL0 |= ENC + ADC10SC;
 // Sampling and conversion start
 //__bis_SR_register(CPUOFF + GIE);
 // LPM0 with interrupts enabled
 //results[0] = ADC10MEM;
 // Retrieve result
 //ADC10CTL0 &= ~ENC;
 /* Get voltage */
 //ADC10CTL1 = INCH_11;
 // AVcc/2
 //ADC10CTL0 = SREF_1 + ADC10SHT_2 + REFON + ADC10ON + ADC10IE +
REF2_5V;
 //__delay_cycles(240);
 //ADC10CTL0 |= ENC + ADC10SC;
 // Sampling and conversion start
 //__bis_SR_register(CPUOFF + GIE);
 // LPM0 with interrupts enabled
 //results[1] = ADC10MEM;
 // Retrieve result
 /* Stop and turn off ADC */
 //ADC10CTL0 &= ~ENC;
 //ADC10CTL0 &= ~(REFON + ADC10ON);
 /* oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV= A10*423/1024 - 278
 * the temperature is transmitted as an integer where 32.1 = 321
 * hence 4230 instead of 423
 */
 //temp = results[0];
 //degC = ((temp - 673) * 4230) / 1024;
 //if((*tempOffset) != 0xFFFF)
 //{
 // degC += (*tempOffset);
 //}
 //temp = results[1];
 //volt = (temp*25)/512;
 /* Package up the data */
 //msg[0] = degC&0xFF;
 //msg[1] = (degC>>8)&0xFF;
 //msg[2] = volt;
 /* Send it over serial port */
 //transmitDataString(1, addr, rssi, msg);
 BSP_TOGGLE_LED1();

33

 /* Done with measurement, disable measure flag */
 sSelfMeasureSem = 0;
 /* Have we received a frame on one of the ED connections?
 * No critical section -- it doesn't really matter much
 if we miss a poll
 */
 if (sPeerFrameSem)
 {
 uint8_t msg[3], len, i;
 /* process all frames waiting */
 for (i=0; i<sNumCurrentPeers; ++i)
 {
 if (SMPL_SUCCESS == SMPL_Receive(sLID[i], msg, &len))
 {
 ioctlRadioSiginfo_t sigInfo;
 processMessage(sLID[i], msg, len);
 sigInfo.lid = sLID[i];
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SIGINFO,
 (void *)&sigInfo);

 value = msg[2]*100+msg[1]*10+msg[0];
 //transmitData(i, sigInfo.sigInfo.rssi,
 (char*)msg);
 printing[4]='0' + msg[0];
 printing[3]='0' + msg[1];
 printing[2]='0' + msg[2];
 TXString(printing, sizeof printing);
 BSP_TOGGLE_LED2();
 BSP_ENTER_CRITICAL_SECTION(intState);
 sPeerFrameSem--;
 BSP_EXIT_CRITICAL_SECTION(intState);
 }
 }
 }
 if (BSP_BUTTON1())
 {
 __delay_cycles(2000000); /* debounce (0.25 seconds) */
 changeChannel();
 }
 else
 {
 checkChangeChannel();
 }
 BSP_ENTER_CRITICAL_SECTION(intState);
 if (sBlinky)
 {

34

 if (++sBlinky >= 0xF)
 {
 sBlinky = 1;
 BSP_TOGGLE_LED1();
 BSP_TOGGLE_LED2();
 }
 }
 BSP_EXIT_CRITICAL_SECTION(intState);
 }
}
/* Runs in ISR context. Reading the frame should be done
in the */
/* application thread not in the ISR thread. */
static uint8_t sCB(linkID_t lid)
{
 if (lid)
 {
 sPeerFrameSem++;
 sBlinky = 0;
 }
 else
 {
 sJoinSem++;
 }
 /* leave frame to be read by application. */
 return 0;
}
static void processMessage(linkID_t lid,
uint8_t *msg, uint8_t len)
{
 /* do something useful */
 if (len)
 {
 //sprintf(printing, "a %d",*msg);
 //sprintf(printing, "Second element %d",msg[1]);
 //transmitData(0, sigInfo.sigInfo.rssi, (char*)msg);
 BSP_TOGGLE_LED1();
 }
 return;
}
static void changeChannel(void)
{
#ifdef FREQUENCY_AGILITY
 freqEntry_t freq;
 if (++sChannel >= NWK_FREQ_TBL_SIZE)
 {

35

 sChannel = 0;
 }
 freq.logicalChan = sChannel;
 SMPL_Ioctl(IOCTL_OBJ_FREQ, IOCTL_ACT_SET, &freq);
 BSP_TURN_OFF_LED1();
 BSP_TURN_OFF_LED2();
 sBlinky = 1;
#endif
 return;
}
/* implement auto-channel-change policy here... */
static void checkChangeChannel(void)
{
#ifdef FREQUENCY_AGILITY
 int8_t dbm, inARow = 0;
 uint8_t i;
 memset(sSample, 0x0, SSIZE);
 for (i=0; i<SSIZE; ++i)
 {
 /* quit if we need to service an app frame */
 if (sPeerFrameSem || sJoinSem)
 {
 return;
 }
 NWK_DELAY(1);
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RSSI,
 (void *)&dbm);
 sSample[i] = dbm;
 if (dbm > INTERFERNCE_THRESHOLD_DBM)
 {
 if (++inARow == IN_A_ROW)
 {
 changeChannel();
 break;
 }
 }
 else
 {
 inARow = 0;
 }
 }
#endif
 return;
}
/*--
* ADC10 interrupt service routine

36

--*/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
 __bic_SR_register_on_exit(CPUOFF);
 // Clear CPUOFF bit from 0(SR)
}

/*--
* Timer A0 interrupt service routine
--*/
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 sSelfMeasureSem = 0;
}

37

A.3. Minimal RF Integration Code
#ifndef MRFI_H
#define MRFI_H

#include "bsp.h"
#include "mrfi_defs.h"
/* --
 * Defines
 * --
 */
#define MRFI_NUM_LOGICAL_CHANS
__mrfi_NUM_LOGICAL_CHANS__
#define MRFI_NUM_POWER_SETTINGS
__mrfi_NUM_POWER_SETTINGS__
/* return values for MRFI_Transmit */
#define MRFI_TX_RESULT_SUCCESS 0
#define MRFI_TX_RESULT_FAILED 1
/* transmit type parameter for MRFI_Transmit */
#define MRFI_TX_TYPE_FORCED 0
#define MRFI_TX_TYPE_CCA 1
#ifndef SMPL_SECURE
#define NWK_HDR_SIZE 3
#define NWK_PAYLOAD MAX_NWK_PAYLOAD
#else
#define NWK_HDR_SIZE 6
#define NWK_PAYLOAD (MAX_NWK_PAYLOAD+4)
#endif
/* if external code has defined a maximum payload,
use that instead of default */
#ifdef MAX_APP_PAYLOAD
#ifndef MAX_NWK_PAYLOAD
#error ERROR: MAX_NWK_PAYLOAD not defined
#endif
#if MAX_APP_PAYLOAD < NWK_PAYLOAD
#define MAX_PAYLOAD NWK_PAYLOAD
#else
#define MAX_PAYLOAD MAX_APP_PAYLOAD
#endif
#define MRFI_MAX_PAYLOAD_SIZE (MAX_PAYLOAD+NWK_HDR_SIZE)
/* SimpliciTI payload size plus six byte overhead */
#endif
/* frame definitions */
#define MRFI_ADDR_SIZE __mrfi_ADDR_SIZE__

38

#ifndef MRFI_MAX_PAYLOAD_SIZE
#define MRFI_MAX_PAYLOAD_SIZE __mrfi_MAX_PAYLOAD_SIZE__
#endif
#define MRFI_MAX_FRAME_SIZE
(MRFI_MAX_PAYLOAD_SIZE + __mrfi_FRAME_OVERHEAD_SIZE__)
#define MRFI_RX_METRICS_SIZE
__mrfi_RX_METRICS_SIZE__
#define MRFI_RX_METRICS_RSSI_OFS
__mrfi_RX_METRICS_RSSI_OFS__
#define MRFI_RX_METRICS_CRC_LQI_OFS
__mrfi_RX_METRICS_CRC_LQI_OFS__
/* Radio States */
#define MRFI_RADIO_STATE_UNKNOWN 0
#define MRFI_RADIO_STATE_OFF 1
#define MRFI_RADIO_STATE_IDLE 2
#define MRFI_RADIO_STATE_RX 3
/* Platform constant used to calculate worst-case for
an application
 * acknowledgment delay. Used in the NWK_REPLY_DELAY().
 *
#define PLATFORM_FACTOR_CONSTANT
(2 +
2*(MAX_HOPS*(MRFI_CCA_RETRIES*(8*MRFI_BACKOFF_PERIOD_USECS)/1000)
))
/* --
 * Macros
 * --
 */
#define MRFI_GET_PAYLOAD_LEN(p)
__mrfi_GET_PAYLOAD_LEN__(p)
#define MRFI_SET_PAYLOAD_LEN(p,x)
__mrfi_SET_PAYLOAD_LEN__(p,x)

#define MRFI_P_DST_ADDR(p)
__mrfi_P_DST_ADDR__(p)
#define MRFI_P_SRC_ADDR(p)
__mrfi_P_SRC_ADDR__(p)
#define MRFI_P_PAYLOAD(p)
__mrfi_P_PAYLOAD__(p)

/* --
 * Typdefs
 * --
 */

39

typedef struct
{
 uint8_t frame[MRFI_MAX_FRAME_SIZE];
 uint8_t rxMetrics[MRFI_RX_METRICS_SIZE];
} mrfiPacket_t;
/* --
 * Prototypes
 * --
 */
void MRFI_Init(void);
uint8_t MRFI_Transmit(mrfiPacket_t *, uint8_t);
void MRFI_Receive(mrfiPacket_t *);
void MRFI_RxCompleteISR(void);
/* populated by code using MRFI */
uint8_t MRFI_GetRadioState(void);
void MRFI_RxOn(void);
void MRFI_RxIdle(void);
int8_t MRFI_Rssi(void);
void MRFI_SetLogicalChannel(uint8_t);
uint8_t MRFI_SetRxAddrFilter(uint8_t *);
void MRFI_EnableRxAddrFilter(void);
void MRFI_DisableRxAddrFilter(void);
void MRFI_Sleep(void);
void MRFI_WakeUp(void);
uint8_t MRFI_RandomByte(void);
void MRFI_DelayMs(uint16_t);
void MRFI_ReplyDelay(void);
void MRFI_PostKillSem(void);
void MRFI_SetRFPwr(uint8_t);
/* --
 * Global Constants
 * --
 */
extern const uint8_t mrfiBroadcastAddr[];
#endif

	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS, ABBREVIATIONS, AND SYMBOLS
	EXECUTIVE SUMMARY
	IMPLEMENTATION STATEMENT
	1. INTRODUCTION
	2. OBJECTIVE
	3. SCOPE
	4. METHODOLOGY
	4.1. TEG Harvester Development
	4.2. Analysis of Temperature Profiles in Asphalt Pavements
	4.3. Design of the SHM System
	4.3.1. DC-DC Booster and Buck Converter
	4.3.2. Microcontroller and Wireless Transceiver/External Access Receiver

	5. FINDINGS
	5.1. Output of TEG Harvester
	5.2. Required Temperature Differential
	5.2.1. Minimum Temperature Differential Needed to Power the DC-DC Booster
	5.2.2. Estimating SHM System Downtime

	5.3. SHM System Data Storage and Transmission Capabilities

	6. CONCLUSIONS
	7. RECOMMENDATIONS
	REFERENCES
	APPENDIX A
	A.1. End Device Code for Communicating with Access Point
	A.2. Access Point Code
	A.3. Minimal RF Integration Code

